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A study of Multiscale Seismic Data Joint Inversion method 

  

Summary 

Most conventional inversion methods are mainly based on 
surface seismic data. Although it has good lateral 
continuity, its vertical resolution is poor, due to the 
limitations of surface seismic data. In this paper, we 
integrate the surface seismic data, VSP data, and crosswell 
data in the inversion equation. Because these different data 
have different advantages, they can compensate for each 
other, and thus improve the inversion resolution. Also, we 

used the modified Cauchy prior information of reflectivity, 
and made the statistics of well data, which demonstrated its 
reliability. To solve the inversion equation, I adopted the 
modified PRP conjugate gradient method, which is stable 
and faster than matrix inverse method. Finally, we tested 
this inversion method with 2D model and real survey data, 
which suggested this method has better precision. 

Introduction 

Multiscale seismic data joint inversion is proposed by 
DanPing Cao in 2009. In this method he integrated the 

surface seismic data, VSP data, and crosswell data in the 
inversion equation (Danping et al., 2009). Although he 
adopted the modified Cauchy prior information as 
constraint of reflectivity, he only showed the superiority of 
this prior distribution theoretically, without proving 
whether this distribution conforms to real seismic data or 
not. In this paper, I show the statistical histogram of real 
well data, demonstrating that the modified Cauchy 

distribution conforms the real well data well. Besides, the 
influence of the parameters on the inversion result is 
studied. Since this inversion method involves many seismic 
data, it is important to improve the solving method, so as to 
save time. I modified the PRP conjugate gradient method, 
mainly by changing the direction parameter, made it search 
the direction faster, thus reduced the iteration times, and 
increased the convergent rate. 

Method 

Based on the convolution model: 

d Gm n= +                             (1) 

where D is data vector, G is kernel, m is model parameter, 

and n is noise.  

Conventional inversion method tried to minimize the noise, 

but since prior information about model parameter is 

introduced, we minimize both the noise and norm of the 

solution here, as shown in equation (2) (Tarantola, 2005): 

2 1min[|| || || || ]d Gm m                 (2) 

Bayesian Theory 

According to Bayesian Inference Theory, once the prior 
probability and the likelihood function is known, the 

posterior probability can be obtained by multiplying them, 

like:
( , ) ( ) ( | )

( | ) ( ) ( | )
( ) ( ) ( | )

h d r p r p d r
p r d p r p d r

p d p r p d r dr
  



    (3) 

where p(r) is the prior probability of random variable r, 
p(d|r) is the likelihood function, and p(r|d) is the posterior 
probability (Ulrych T et al., 2001). Figure 1 shows their 
relationship. 

 
Figure 1  The Bayesian inference theory 

Once the posterior probability is obtained, according to 
Maximum Posterior Probability (MAP), the optimal value 
can be solved by maximize the posterior probability. MAP 
states that the random variable is at its optimal value when 
the MAP reaches the maximum value. 

Assume the noise in surface seismic data obeys Gaussian 
distribution, of which the mean value is 0, and variance is 

2

n . Then likelihood function of reflectivity ( | )Sp d r  can be 
represented in the form of the noise distribution, as: 
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2 /2 2

1
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   (4) 

Where Sd  is the surface seismic data, Sn is noise, sG is the 

surface wavelet matrix, n is the standard variance of noise. 

Similarly, assume the noise in VSP data and crosswell data 
also obeys Gaussian distribution, then we have: 

   
2 /2 2

1
( | ) ( ) exp

(2 ) 2

T

v v v v

v v N

v v

d G r d G r
P d r P n

 

    
   

   (5) 
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w w w w

w w N

w w

d G r d G r
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 

    
   

   (6) 

where vd  is the VSP data, wd  is the crosswell data, vn is 

noise of VSP, wn
is noise of crosswell, vG is the VSP 

wavelet matrix,  wG is the crosswell wavelet matrix, v is 

the standard variance of VSP noise, w is the standard 
variance of crosswell noise. 

Surface seismic data, VSP data and crosswell data reflect 
the characteristics of the same geologic body, namely, they 
are the responses of the same geologic body, but they are 
acquired and processed independently. Therefore, the joint 
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.

likelihood function of them can be calculated by 
multiplying the independent likelihood functions (Laurence, 
1988), as shown in equation (7): 
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where , 

1 1/2
3 /2 2 2 2
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

 

Further, assume the reflectivity obeys Gaussian distribution, 

of which the mean value is r , and variance is
2

r , then we 
have the prior probability of reflectivity, as: 
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Where,  
2 2 /2

1
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r
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

 

Then according to Bayesian Inference Theory, the posterior 
probability can be calculated as: 
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(9) 

According to MAP, the optimal reflectivity can be obtained 

by maximizing the posterior probability. Simplify equation 
(9), and introduce the impedance constraint (Paul 
Glederblom, Jaap Leguijt, 2010), we have the final 
objective function as: 
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(10) 

Prior distribution of reflectivity 

Commonly used prior distributions are (Danilo, 2008): 
Gaussian distribution: 
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Cauchy distribution: 
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Here we use the modified Cauchy distribution: 
2
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                 (13) 

Figure 2 shows the comparison of these different 

distributions.

Figure 2  Comparison of different distributions 

Figure 2(a) suggests that modified Cauchy has long tail 
distribution characteristic, which can help realize the 

sparseness of the reflectivity; Figure 2(b) suggest that 
around zero modified Cauchy has higher value than Cauchy 
distribution, indicating that the modified Cauchy can better 
protect weak reflectivity. 

To test the agreement of modified Cauchy distribution with 
real data, the statistical simulation of four wells is shown in 
Figure 3. 

Figure 3  Statistical histogram of well data and simulation 
of modified Cauchy distribution simulation 

Through Figure 3, it can be seen that modified Cauchy 
distribution fits the real well data well, which demonstrates 
the rationality and reliability of modified Cauchy 
distribution. The result of these different prior distributions 
is shown in Figure 4. 
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Figure 4  The result of different prior distributions 

The correlation coefficient between model reflectivity and 
gauss distribution result is 0.708, for Cauchy distribution is 
0.920, and for modified Cauchy distribution is 0.978. 
Therefore, the result of modified Cauchy distribution is 
better, and Figure 4 also demonstrates that modified 
Cauchy distribution not only realizes the sparseness of the 
result, but also protects the weak reflection well. 

To solve equation 10, modified PRP conjugate gradient 
method is used. The parameters of this method are: 
Iteration equation: 

  1 , 0,1,...k k k kr r d k   
            (14) 

Search direction: 
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(15) 
Direction parameter: 
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k T
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g g g

g g
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

                                   (16) 

Figure 5 shows the comparison of modified PRP method 
with conventional matrix inverse method. 

Figure 5  Comparison of modified cg and matrix inverse 
method 

The result of the modified PRP cg is almost the same as the 
result of matrix inverse method, which demonstrates the 
stability and reliability of this modified method. However, 
this method has faster convergent rate than conventional 
method, as shown in Figure 6. 

 

Figure 6  Run time comparison of modified cg and matrix 
inverse method 

Figure 6 suggests that this modified PRP cg method uses 

much less time to solve the equation, which indicates that 
modified method has faster convergent rate. 

To test the influence of the parameter, we changed the 

parameter, and show the corresponding result in Figure 7, 8, 
and 9. The parameter lambda is the weight coefficient of 
prior constraint in the final equation, and delta is the 
parameter in prior constraint, it is related to the reflectivity 
variance.  

 
Figure 7  The influence of lambda on result 

Figure 8  The influence of delta on result 

Figure 7 and 8 indicate that delta and lambda, work the 
opposite way. When Lambda increases, the result becomes 
sparser; when delta increases, the result becomes denser. 
Figure 9 shows the influence of delta and lambda on the 
final objective function. 
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.9Figure  The influence of lambda and delta on objective 
function value 

Through Figure 9, we can see that when delta increases, the 

objective function value decreases; when lambda increases, 
the function value increases. 

Example 

Figure 11 shows the test of this inversion method with 2D 
model. The left one is original model, the middle one is 
conventional inversion result, the right one is the joint 
inversion method. 

Figure 10  Test with 2D model 

Through comparison, we can see that joint inversion 
method has higher vertical resolution. Figure 12 shows the 
test with real survey data, the upper one is conventional 
inversion result, and the below one is the joint inversion 

result.  

Figure 11  Test with real survey data 

In Figure 12, we can easily see that joint inversion method 
has higher vertical resolution than conventional method, 
and can identify thin layers that conventional method can’t 
identify. 

Conclusions 

Through test with model and real survey data, we can see 
that multiscale seismic data joint inversion can integrate 
different-scale seismic data, take use of advantages of 
different data, and thus improve the inversion precision. 
Compared with commonly used gauss distribution and 

Cauchy distribution, modified Cauchy prior constraint fits 
the real data well, and can effectively protect weak 
reflectivity. Modified PRP conjugate gradient method is a 
stable method, and it has faster convergent rate than 
conventional method. 

Although the model test and real seismic data test show that 
multiscale seismic data inversion method is successful in 
enhancing the resolution, there is a lot work to do. The first 
one is that: surface seismic data, VSP data, and crosswell 
data are acquired and processed independently, then to 
match their phase is a difficult problem. How to make sure 

that their phase fit each other well is a very basic and 
important issue. Moreover, even though we have studied 
the influence of the parameters on inversion result, there 
are no criteria to make sure that the parameters we choose 
is appropriate and reliable. Besides, in the inversion 
equation, we didn’t include the factors, such as porosity, 
permeability, and fluid effect, all of which can influence 
the result. All in all, plenty of work needs to do to improve 
the method. 
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